Cologne Ophthalmological Reading and Image Analysis Center

Cornea Reading Center - About CORIC

Establishing the first semiautomatic method of corneal blood and lymphatic vessel quantification in preclinical and clinical settings, Dr. Felix Bock built the base for the Cologne Ophthalmological Reading and Image Analysis Center (CORIC) in 2005. From 2006 on the team under the leadership of Prof. Dr. med. Cursiefen supervises Phase II and Phase III international, multi-center studies. In 2011 Prof. Cursiefen and Dr. Bock moved to Cologne and founded CORIC.

Our Ophthalmological Reading and Image Analysis Center offers solutions for preclinical and clinical studies regarding angiogenesis and angiogenesis in the anterior part of the eye including cornea and conjunctiva. 

For preclinical studies the centre provides several in vivo and vitro models to analyze the potency and safety of anti-lymphangiogenic/angiogenic drugs including the corneal transplantation and the suture induced inflammatory neovascularization models. For clinical studies we provide on the one hand supervising of the attending centers including photographer training, image upload server, and quality control/management. On the other hand the centre analyses the images regarding the area covered by vessels, vessel length, vessel caliber and distance to the centre and limbus.

Priv.-Doz. Dr. Felix Bock

Priv.-Doz. Dr. Felix Bock

Director of CORIC

+49 221 478-97789
+49 221 478-97836


CORIC – Cologne Ophthalmological Reading and Image Analysis Center
Experimental Ophthalmology
LFI Building 13, Level 4, Room 060
University Hospital of Cologne
Kerpener Str. 62
50937 Cologne, Germany


Reading Center Team
Birgit Regenfuß, PhD
Deniz Hoz, MD
Maike Kunze, Study Nurse
Gabriele Braun, Technical Assistance
Jasmine Onderka, Technical Assistance


  • Assistance with clinical protocol development, including reading center-related outcome parameters and inclusion / exclusion criteria
  • Development, provision and training of standardized photography protocols
  • Instruction for clinical sites in methods for transmitting images captured for the study
  • Image upload server administration
  • Continues status update
  • Long-term archival of study materials, both digital and hardcopy
  • Development of study-specific analyzing procedures and protocols
  • Semiautomatic image analysis: Area covered by vessels, vessel length, vessel caliber, maximal distance from limbus, minimal distance to center


  • Hos, D., et al., Suppression of inflammatory corneal lymphangiogenesis by application of topical corticosteroids. Arch Ophthalmol, 2011. 129(4): p. 445-52.
  • Regenfuss, B., et al., Genetic heterogeneity of lymphangiogenesis in different mouse strains. Am J Pathol, 2010. 177(1): p. 501-10.
  • Dietrich, T., et al., Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol, 2010. 184(2): p. 535-9.
  • Cursiefen, C., et al., GS-101 antisense oligonucleotide eye drops inhibit corneal neovascularization: interim results of a randomized phase II trial. Ophthalmology, 2009. 116(9): p. 1630-7.
  • Koenig, Y., et al., Short- and long-term safety profile and efficacy of topical bevacizumab (Avastin) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol, 2009. 247(10): p. 1375-82.
  • Regenfuss, B., et al., [Topical inhibition of angiogenesis at the cornea. Safety and efficacy]. Ophthalmologe, 2009. 106(5): p. 399-406.
  • Bock, F., et al., Safety profile of topical VEGF neutralization at the cornea. Invest Ophthalmol Vis Sci, 2009. 50(5): p. 2095-102.
  • Bock, F., et al., Improved semiautomatic method for morphometry of angiogenesis and lymphangiogenesis in corneal flatmounts. Exp Eye Res, 2008. 87(5): p. 462-70.
  • Hos, D., et al., Age-related changes in murine limbal lymphatic vessels and corneal lymphangiogenesis. Exp Eye Res, 2008. 87(5): p. 427-32.
  • Hos, D., et al., Inflammatory corneal (lymph)angiogenesis is blocked by VEGFR-tyrosine kinase inhibitor ZK 261991, resulting in improved graft survival after corneal transplantation. Invest Ophthalmol Vis Sci, 2008. 49(5): p. 1836-42.
  • Bock, F., et al., Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol, 2008. 246(2): p. 281-4.
  • Bock, F., et al., Blockade of VEGFR3-signalling specifically inhibits lymphangiogenesis in inflammatory corneal neovascularisation. Graefes Arch Clin Exp Ophthalmol, 2008. 246(1): p. 115-9.
  • Dietrich, T., et al., Inhibition of inflammatory lymphangiogenesis by integrin alpha5 blockade. Am J Pathol, 2007. 171(1): p. 361-72.
  • Bock, F., et al., Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophthalmol Vis Sci, 2007. 48(6): p. 2545-52.
  • Cursiefen, C., et al., Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J Exp Med, 2011. 208(5): p. 1083-92.
Nach oben scrollen